Optimizing Biological Denitrification of Groundwater — Recovering Waste Backwash Water & Co-Removal of Hexavalent Chromium

Issam Najm, Ph.D., P.E.
Water Quality & Treatment Solutions, Inc.

TJ Kim, Ph.D., P.E. Clark Ajwani, P.E.

Los Angeles County Department of Public Works
Water Works Division

Acknowledgement

Water Research Foundation:

Hsiao-Wen Chen, Ph.D.

Project Advisory Committee:

Patrick Evans, Ph.D. – CDM Smith Khadija Durbas – LA Dept. of Water & Power JoAnn Silverstein, Ph.D. – Univ. of Nevada Reno

LA County DPW:

Adam Ariki

WQTS:

Nancy Patania Brown, P.E. Brian Gallagher Karl Gramith Eric Seo

Outline

- LA County Dept. of Public Works & Waterworks Districts
- 2. Configuration of the Biological Denitrification (BDN) System Evaluated
- 3. Pilot Testing Results
- 4. General Observations

LA County Dept. of Public Works

- ◆ Formed in 1985
- Consists of 34 divisions & groups
- ◆ 3400 employees in 500 job classifications
- Annual operating budget of \$2 Billion
- Responsible for design, construction, operation, maintenance and repair of roads, airports, sewers, water supply, flood control, water quality, and water conservation facilities

WQTS

LA County Waterworks Districts

- ◆ A division of the LA County Dept. of Public Works
- ◆ Supplies water to 200,000 residents in LA County
- ◆ Five LA County Waterworks Districts

District	Established	Connections	Estimated Population
District 21; Kagel Canyon	1935	250	990
District 29; Malibu	1959	7450	20,120
District 36; Val Verde	1963	1,320	4,650
District 37; Acton	1963	1,390	4,330
District 40; Antelope Valley	1993	54,640	170,440

District 37

6

District 37

- ◆ District 37 serves drinking water to approx. 4,400 people in Acton, California (near Palmdale)
- The District's water supply is primarily groundwater from 3 wells, and treated surface water from AVEK's treatment plant
- All three wells contain nitrate at various levels
- ◆ The District's service area is not sewered, limiting waste disposal options from groundwater treatment systems

Nitrate in Well 37-01

8

Biological Treatment System Configuration

Fundamentals

District 37

Overall Treatment System

11

General Design & Operational Parameters

Parameter	Value	
Biological Contactor EBCT	10 min	
Filtration Rate	3.0 gpm/sf	
Runtime Between Backwashes	24 – 48 hrs	
Unit Backwash Volume	~150 gal/sf	
Water Wastage Rate	6% to 12%	

General Observations

Overall System

District 37

Biological Treatment

Pilot Testing Results

General Observations

with Washwater Recovery

Pilot Testing Results

Pilot Plant Configuration

Washwater Recovery System Operation

Parameter	Value	
Coagulant Type	Ferric Chloride	
Coagulant Dose (Bio. Contactor WBW)	75 mg/L	
Coagulant Dose (Filter WBW)	50 mg/L	
Clarification Time	2 hrs	
Return Flow (as % of Feed Flow)	10% to 15%	

Groundwater Quality

Parameter	Unit	Ave. Value
Nitrate	mg/L as N	8.2
Dissolved Oxygen	mg/L	8.2
Turbidity	NTU	0.15
рН		7.5
Temperature	°C	21.4
Alkalinity	mg/L CaCO ₃	174
Hardness	mg/L CaCO ₃	320
тос	mg/L	0.54

Return Washwater Quality

Parameter	Unit	Biological Contactor	Media Filter
Turbidity	NTU	20	3
Iron	mg/L	14	5
Chromium	μg/L	16	4
HPC	CFU/mL	$2 imes 10^6$	0.6×10^6
тос	mg/L	50	4.6
Odor	TON	100	200

Nitrate Removal

Bacterial Levels

Removal of Chromium

Turbidity

Threshold Odor Number (TON)

General Observations

- Biological treatment is highly effective at removing nitrate.
- ◆ Biological treatment also achieves effective removal of Cr(VI).
- Recovery of waste backwash water is technically feasible.
- Wastage rate can be reduced from about 12% without washwater recovery, to <1% with washwater recovery.
- However, washwater recovery adds operational and water quality challenges that should be taken into consideration.

General Observations

Thank You!

Questions?

Issam.Najm@WQTS.com

